

©	Copy	right	Reserved
---	------	-------	----------

Index No.				

Institute of Certified Management Accountants of Sri Lanka Foundation Level

November 2014 Examination

Examination Date: 23rd November 2014 **Number of Pages:** 11 **Examination Time:** 9.30 a:m. - 11.30 a:m. **Number of Questions:** 50

Instructions to Candidates

- 1. Time allowed is **two (2) hours**.
- 2. Total: 100 Marks.
- 3. Answer <u>all</u> questions.
- 4. You will need to write your <u>index number</u> on the question paper as instructed. Please ensure that your index number is written on each page and that you collate and secure your script at the end of the assessment.
- 5. <u>Please indicate your answers in the question paper itself</u>. Strictly prohibited to take out your question paper / working sheets from the Examination Centre.
- 6. <u>Encircle</u> the correct answer in relation to <u>Multiple Choice Questions</u>. <u>Provide a concise</u> answer in the space provided in relation to questions that require short answers.
- 7. Candidates are allowed to use non-programmable calculators.
- 8. The answers should be in **English Language.**

Subject	Subject Code
Business Mathematics & Statistics	(BMS / FL 3 - 103)

(1)	Simplify $\frac{\sqrt[3]{64x^3y^9}}{4xz^{-2}}$	and express with positive exponents.
-----	--	--------------------------------------

(a)
$$16y^3z^2$$

(b)
$$x^3 z^2$$

(c)
$$x^9 y^3 z^{-2}$$

(d)
$$y^3 z^2$$

(2) The factored expression of $8x^3 + 125$ is:

(a)
$$(8x+5)(4x^2+25+10x)$$

(b)
$$(2x+25)(4x^2+25-20x)$$

(c)
$$(2x+5)(4x^2+25-10x)$$

(d)
$$(2x-5)(4x^2+25+10x)$$

(3) Lelani is 32 years older than her daughter. In 3 years, Lelani will be five times as old as her daughter. How old is Lelani after four years from now?

(a) 37 years

(b) 39 years

(c) 40 years

(d) 41 years

(4) RBB research firm began operations in the year 2002. In the beginning, RBB had only 7 data analysts. No recruitments were made for the analysts' cadre until the end of 2004. In the year 2005, the Director of the firm decided to increase the cadre of analysts by 5 each subsequent year. What would be the cadre size of analysts by the end of 2016?

(b) 553

(c) 623

(d) 798

(5) Miss. Surangi deposited Rs.7,500/- in a bank. The account pays 8.5% compounded semi-annually. How long will it take the deposited amount to double itself?

(b) Approximately 33 years

(d) Approximately 53 years

- (6) What annual rate of interest compounded annually should you seek if you want to double your investment in 6 years?
 - (a) 12.24%

(b) 6.12%

(c) 5.24%

- (d) 4%
- (7) The graph of 4x + 3y = 12 is the line which passes through the points:
 - (a) (0, 4) and (0, 3)

(b) (4, 0) and (0, 3)

(c) (0, 4) and (3, 0)

- (d) (4, 0) and (3, 0)
- (8) The first order derivative of the function $y = 4x^5(3x + 2)$ with respect to x is:
 - (a) $20x^4(3x-1)$

(b) $60x^4$

(c) $72x^5 - 40x^4$

- (d) $20x^4(3x-2)+12x^5$
- (9) Second order derivative of a certain function is $f^{11}(x) = 12x 19$. Critical values of f(x) can be found at x = -3, x = 4 and x = 7. At which of the following critical values, a relative maximum exists?
 - (a) x = -19

(b) x = -3

(c) x = 4

- (d) x = 7
- (10) The indefinite integral of the function $y = \frac{50}{x}$ is:
 - (a) $\frac{50}{x^{-2}}$

(b) $\frac{50}{x^2}$

(c) ln(50x) + C

- (d) $50\ln(x) + C$
- (11) Those methods involving collecting, organizing and summarizing data are discussed in:
 - (a) Descriptive Statistics

(b) Inferential Statistics

(c) Definite integration

- (d) Differentiation
- (12) Which of the following is not a continuous random variable?
 - (a) The weight of a particular commodity
 - (b) The length of time required to perform a particular task by a worker
 - (c) The favorite radio channel of an individual
 - (d) Z-Score of a student passed in a G.C.E. A/L examination
- (13) Following Pie chart presents the highest level of education of a group of employees in a certain company. If the group size is 250, how many employees have failed in the G.C.E. A/L examination?

- Highest Level of Education
 - ☐ O/L or Below
 - □ A/L
 - □ Diploma
 - ☑ Degree or Above

(a) 60

(b) 67

(c) 127

(d) 190

- (14) Which of the following pairs is not included in measures of central tendency?
 - (a) Standard Deviation, Second Quartile
 - (b) Mean, Variance
 - (c) Range, Median
 - (d) Standard Deviation, Inter-Quartile Range

Answer the 15th question to 19th question based on the above information.

In a garment factory, bonuses are paid for its operators according to their average efficiency. The structure of payment of bonus as follows.

Efficiency	Bonus in Rs.
Efficiency < 40	0
40 ≤ Efficiency < 60	1,000
60 ≤ Efficiency < 70	1,500
70 ≤ Efficiency < 80	2,000
80 ≤ Efficiency < 90	3,000
Efficiency ≥ 90	5,000

Average efficiencies of employees who work in the factory are as follows.

61	47	75	74	50
69	86	60	34	29
81	67	39	27	42
65	67	67	51	86

(15) The	simple	arithmetic	mean of	bonuses	of er	nnlov	ees	is.
١	10	, 1110	SILLIPIC	arrunnenc	mean or	UUIIUSUS	OI CI.	upioy	CCS	10.

(a) Rs. 2,084/-

(b) Rs. 1,375/-

(c) Rs. 2,500/-

- (d) Rs. 1,350/-
- (16) The median of bonuses of employees is:
 - (a) Rs. 0

(b) Rs.1,000/-

(c) Rs.1,500/-

- (d) Rs.2,000/-
- (17) The mode of bonuses of employees is:
 - (a) Rs. 0

(b) Rs.1,000/-

(c) Rs.1,500/-

- (d) Rs.2,000/-
- (18) The standard deviation of bonuses of employees is:
 - (a) Rs. 944.16/-

(b) Rs. 891,447/-

(c) Rs. 920.26/-

- (d) Rs. 846,875/-
- (19) The skewness of bonuses of employees is:
 - (a) -0.4075

(b) +0.4075

(c) 0

- (d) +0.1661
- (20) Mr. Samantha is the Head of the Finance Division of RANMASU Bank. According to his past experience he says that the probability of exceeding their total number of depositors 10,000 is 0.25. Which of the following approach has been used by Mr. Samantha in order to estimate the above mentioned probability?
 - (a) Classical approach

(b) Relative frequency approach

(c) Axiomatic approach

(d) Subjective approach

(a)		ne of a person with	o has got an "A" p (b)	11	
	$\frac{2}{3}$			15	
(c)			(d)		
	$\frac{4}{5}$			$\frac{29}{30}$	
					3; Set $A = \{1, 4, 5, 7, 8\}$ and
Se	et $B = \{2, 6, 8, 1\}$	10}. Elements of t	the set $(A \cup B)'$ a	re:	
(a)	{8}		(b)	{3, 9}	40)
(c)	$\{1, 4, 5, 7\}$		(d)	{1, 2, 4, 5, 7, 8,	10}
			ectives. If two boly that selected all t		random without replacementive?
(a)	7	it is the probabilit	y that selected all t (b)	6	uve:
	90			$\frac{6}{89}$	
(c)	7		(d)	49	
	1335			8100	
) the rates of	f probability apply			
(c (d		only positive valu		CM MIL D	(M. 200
(d	he following tab	ple provides a pro	bability distribution		
(d	he following tab	ole provides a pro	bability distribution	1.5	2
(d 26) TI	he following tab X Pr(X = x)	ple provides a pro	bability distribution		
(d	he following tab $ X $ $ Pr(X = x) $ a) 0.54	ole provides a pro	bability distribution	1.5	2
(d 26) Tl 	he following tab $ \begin{array}{c} \mathbf{X} \\ \mathbf{Pr}(\mathbf{X} = \mathbf{x}) \\ \mathbf{a}) 0.54 \\ \mathbf{b}) 0.18 \end{array} $	ole provides a pro	bability distribution	1.5	2
(d 26) Tl (a (b	he following tab X Pr(X = x) 0.54 0.18 0.11	ole provides a pro	bability distribution	1.5	2
(d) (d) (26) TI (a) (a) (b) (c) (d) (d) (d) (7) M (fo) pr	he following tab	ole provides a pro -2 P he best machine of distribution wi	perator in AKL gath the mean of 2 eater than 20 second	1.5 0.1 rment factory. He 0 seconds. For a	2
(de	he following tab X Pr(X = x) a) 0.54 b) 0.18 c) 0.1 d) 0 Irs. Nirmani is tibllows a normal robability of the 0	ole provides a pro -2 P he best machine of distribution wi	perator in AKL gath the mean of 2 eater than 20 second (b)	1.5 0.1 rment factory. He 0 seconds. For a ds? 0.25	2 3p r cycle time for a certain task
(d) (d) (26) TI (a) (a) (b) (c) (d) (d) (d) (d) (for pr)	he following tab	ole provides a pro -2 P he best machine of distribution wi	perator in AKL gath the mean of 2 eater than 20 second	1.5 0.1 rment factory. He 0 seconds. For a	2 3p r cycle time for a certain task
(d) (26) TI (a) (a) (c) (d) (d) (c) (d) (d) (c) (d) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	he following tab X Pr(X = x) a) 0.54 b) 0.18 c) 0.1 d) 0 frs. Nirmani is ti bllows a normal robability of the 0 0.5 Iarks of 200 call and and deviation	he best machine of a distribution will length of time grandidates in an expension of 20 marks.	perator in AKL gath the mean of 2 eater than 20 second (b) (d) amination follow a Given that the parameters are second contact to the parameters are second con	1.5 0.1 rment factory. He 0 seconds. For a ds? 0.25 1 normal distribution	2 3p r cycle time for a certain task
(d) (26) TI (a) (a) (c) (d) (d) (d) (d) (d) (d) (d) (d) (e) (d) (e) (d) (e) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	he following tab X Pr(X = x) a) 0.54 b) 0.18 c) 0.1 d) 0 frs. Nirmani is ti bllows a normal robability of the 0 0.5 Iarks of 200 call and and deviation	he best machine of distribution will length of time grandidates in an ex	perator in AKL gath the mean of 2 eater than 20 second (b) (d) amination follow a Given that the parameters are second contact to the parameters are second con	1.5 0.1 rment factory. He 0 seconds. For a ds? 0.25 1 normal distribution	r cycle time for a certain task a certain cycle, what is the

(21) Two coins are tossed. One coin is unbiased, and the other is biased so that a head is three times as

(d)

 $\frac{1}{3}$

likely as a tail. The probability of obtaining a head and a tail is:

 $\frac{1}{2}$

(a)

(c)

	A certain university has four faculties with 6 Commerce is the largest faculty of that ur Decision Sciences is one department attaches studying in that department. Head of the Department attached randomly. The size of the population in this state a) 30 c) 4,329	niversity ed to the partment to the	with 4,329 students. The Department of e Management Faculty and 75 students are t of Decision Sciences wants to estimate the department and he selected 30 students
(30)	Which of the followings is not a reason for sa (a) The destructive nature of certain tests. (b) The physical impossibility of checking (c) The cost of studying all items in a popul (d) Estimates produced by a sample are true	all iten	ns in the population.
(31)	Which of the followings is not a type of non-	probabi	lity sampling?
(a) Judgmental sampling	(b)	Cluster sampling
(c) Quota sampling	(d)	Convenience sampling
`	Which of the followings is not a property of to (a) It is a continuous distribution (b) Its mean is always zero (c) The variable associated with the t-distr (d) It is bell shaped and symmetrical about A government official selected a random samused to cultivate paddy. The sample variance a normal distribution with the mean of 0.3 act that the average area of the selected group is the most appropriate probability distribution a) T-distribution c) Chi-square distribution	ibution the me aple of 2 e is 0.12 cres. The	ranges from 0 to $+\infty$ an 20 farmers and recorded the area which they 2. The official assumes that the area follows e official wants to determine the probability r than 0.5 acres. Which of the followings is
	The manager of a supermarket selected a ran spending of a customer follows a normal dist wants to calculate the probability that the av If the calculated value of the test statistic is -2 a) 0.015 c) 0.035	tribution erage sp	n with the mean of Rs.1,250/ The manager pending of a customer is less than Rs.500/
(35)	Which of the followings is not included to the	e statist	ical inference?
	a) Point estimation	(b)	Interval estimation
`	c) Hypothesis testing	(d)	Sampling
(36)	An interval estimate is a range of values used (a) Calculate a statistic (b) Estimate a population parameter (c) Estimate the skewness of the sampling (d) Estimate the range of a variable	l to	

(37) A random sample of 100 observations has a			
population standard deviation is known to	be 4.76	52. The 94.5	52% confidence interval for the
mean of that random variable is: (a) 22.35, 24.17	(b)	22.33,	24.19
(a) 22.35, 24.17 (c) 21.35, 23.17	(d)	25.35, 25.35,	26.57
(c) 21.33, 23.17	(u)	23.33,	20.37
(38) In testing hypothesis, the researcher initially	assume	es	
(a) The null hypothesis is true			
(b) The alternative hypothesis is true			
(c) Population parameters are unknown(d) Both the null hypothesis and the alternative	ative h	vnothesis ar	a falsa
(d) Both the nun hypothesis and the atterna	ative ii	ypouicsis are	c raise
(39) According to the results of a hypothesis test,	_		_
the null hypothesis. Which of the following	gs has	been used b	by the researcher as the level of
significance of the test?	(1.)	0.025	
(a) 0.01	(b)	0.025	
(c) 0.05	(d)	0.1	
 (40) A university student has taken a random sat stand, who were waiting for a bus. The stude passengers is significantly greater than 15 min the waiting time follows a normal distribute +1.821, what would be the decision? (a) The mean waiting time is equal to 15 min (b) The mean waiting time is not significantly (c) The mean waiting time is significantly (d) Given details are not enough in order to the standard s	ent was nutes a nion. If ninutes ntly greater	nts to test wat 5% level of the calculate than 15 min	thether the mean waiting time of of significance. It is assumed that ted value of the test statistic is significant.
(41) Which of the following values must not repre	esent a		Pearson correlation coefficient?
(a) 0	(b)	0.05	
(c) -1.01	(d)	+1	
 (42) Mr. Ginige is the Production Manager of a group of employees from his company and After analyzing data, he says that "as the increases in a linear pattern". The association following values can be assumed for the Pear (a) -0.92 (c) +0.92 	l collecter abservant	cted their ef nteeism rate ween both v	ficiency and absenteeism rates. e decreases, the efficiency rate ariables is strong. Which of the
(43) A simple linear regression model has the for of Y when $X = 0$?	rm, Y =	= 3.21 + 1.9	4 X. What is the expected value
(a) 0	(b)	1.94	
(c) 3.21	(d)	5.15	
 (44) If the coefficient of determination for a simple 0.85. Which of the followings gives the right (a) 85% of the total variance of X is explain (b) 85% of the total variation of Y is explain. 	interpoined by	retation for t the fitted m	he value? nodel; $Y = 0.765 + 2.543X$

85% of the total variance of X is explained by Y

(c)

(d)

None of the above

(c)	4.2	(d)	12.6
(47)		hich of the following values of ickly to forecast errors?	f α would cause 6	exponential smoothing to respond the most
(a)	0	(b)	0.12
(c)	0.2	(d)	0.35
(48)		hich of the following values castribution?	annot occur in a r	andom variable which follows a chi-square
(a)	-0.05	(b)	0.025
(c)	0.95	(d)	1.23
(49)		then performing the chi-square edom is: $(R = No. \text{ of rows}, C =$	-	ndence in bi-variate problems, degrees of
(a)	(R-1)(C-1)	(b)	(R-1)(C+1)
(c)	(R+1)(C-1)	(d)	RC + R - C + 1
(50)	as: pe	sociation between the gender a	and job satisfaction	a state university is interested in studying the on of its lecturers. A Chi-square test was What would be the statistical decision at 5%
	(a)	There is a significant associa	ation between the	gender and the job satisfaction.
	(b)	Job satisfaction of female le	cturers is significa	antly less than that of male lecturers.
	(c)	There is no significant assoc	ciation between the	e gender and the job satisfaction.
	(d)) Job satisfaction of female le	cturers is significa	antly greater than that of male lecturers.
				(50 × 2 Marks = Total 100 Marks)

(b)

(d)

(b) 2.1

(46) Given forecast errors of -1.3, 4.2, 3, -0.8, 1.2 and -2.1, what is the mean absolute deviation?

Seasonal Variation

Random Variation

(45) Gradual, long-term movement in the time series is called

(a) Cyclical Variation

(c) Trend

(a) 0.7

List of formulae

Compound Interest

$$S = P(1+i)^n$$

S = Accumulated amount

P = Principle amount

I = interest rate per period

n = number of interest periods

Differentiation

If $f(x) = x^n$, where *n* is a real number, then, $f(x) = nx^{n-1}$.

If f(x) = g(x). h(x) and g'(x) and h'(x) exist, f'(x) = g(x). $h'(x) \pm h(x)$. g'(x)

Integration

$$\int \frac{f^{1}(x)}{f(x)} dx = \ln f(x) + C$$

Summary Measures for a group data distribution

Simple Arithmetic Mean = $\frac{\sum_{i=1}^{N} f_i x_i}{N}$

Median = Size of $\left(\frac{N+1}{2}\right)^{th}$ item of ordered data set

$$\sigma^2 = \frac{\sum fX^2}{N} - \mu_x^2$$

Coefficient of Skewness $(Sk_p) = \frac{3(Mean - Median)}{\sigma}$

Probability

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$\Pr(A/B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

Exponential Smoothing Formula

$$MAD = \sum \frac{|Forecast\ Errors|}{n}$$

AREAS UNDER THE NORMAL CURVE

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	Q.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4235	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	.0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

STUDENT'S t-DISTRIBUTION

	Level of significance for one-tailed test					
df	0.100	0.050	0.025	0.010	0.005	0.0005
			عدسا عد عدسات		A- H1 4 4	
	0.20	0.10	Level of signific 0.05			0.004
1	3.078	6.314		0.002	0.01	0.001
1 2	1.886		12.706	31.821	63.657	636.619
3	1.638	2.920	4.303	6.965	9.925	31.599
4	1	2.353	3.182	4.541	5.841	12.924
5	1.533	2.132	2.776	3.747	4.604	8.610
	1.476	2.015	2.571	3.365	4.032	6.869
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.408
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
						1.001
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
46	4 227	4.740				
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2,528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.768
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
	1.010	1.700	2.000	2.400	2.707	3.723
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3.646
40	1 202	1.604	2.024	0.400	0.70	
40	1.303	1.684	2.021	2.423	2.704	3.551
60	1.296	1.671	2.000	2.390	2.660	3.460
120	1.289	1.658	1.980	2.358	2.617	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.291

CRITICAL VALUES OF CHI-SQUARE

This table contains the values of χ^2 that correspond to a specific right-tail area and specific numbers of degrees of freedom df.

Possible values of χ²

	~	(4	Degrees of
	1	Righ-tail Area		Freedom
0.01	0.02	0.05	0.10	df
6.635	5.412	3.841	2.706	1
9.210	7.824	5.991	4.605	2
11.345	9.837	7.815	6.251	3
13.277	11.668	9.488	7.779	4
15.086	13.388	11.070	9.236	5
16.812	15.033	12.592	10.645	6
18.475	16.622	14.067	12.017	7
20.090	18.168	15.507	13.362	8
21.666	19.679	16,919	14.684	9
23.209	21.161	18.307	15.987	10
24.725	22.618	19.675	17.275	11
26.217	24.054	21.026	18.549	12
27.688	25.472	22.362	19.812	13
29.141	26.873	23.685	21.064	14 .
30.578	28.259	24.996	22.307	15
32.000	29.633	26.296	23.542	16
33.409	30.995	27.587	24.769	17
34.80	32.346	28.869	25.989	18
36.19	33.687	30.144	27.204	19
37.566	35.020	31.410	28.412	20
38.93	36.343	32.671	29.615	21
40.28	37.659	33.924	30.813	22
41.63	38.968	35.172	32.007	23
42.98	40.270	36.415	33.196	24
44.31	41.566	37.652	34.382	25
45.64	42.856	38.885	35.563	26
46.96	44.140	40.113	36.741	27
48.27	45.419	41.337	37.916	28
49.58	46.693	42.557	39.087	29
50.893	47.962	43.773	40.256	30